Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Горский государственный аграрный университет»

УТВЕРЖДАЮ:

Проректор по УВР

Сабалоев Т.Х

2019 г

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля и промежуточной аттестации

при освоении ОПОП ВО, реализуемой по ФГОС ВО 3++

по дисциплине

Б1.0.25. «Электротехника и электроника.»

Направление подготовки 35.03.06- Агроинженерия.

Направленность подготовки

Технические системы в агробизнесе.

Уровень высшего образования- бакалавриат.

Форма обучения - очная; заочная.

Владикавказ 2019

На кафедре_теоретические основы электротехники и электропривода	
Себетова Р.Истарший преподаватель	
Фонд оценочных средств согласован:	
на заседании кафедры теоретические основы электротехники и	
электропривода	
протокол № <u>6</u> от « <u>25</u> » <u>0/</u> 20/9 г.	
Зав. кафедройк.т.н Икоева Э.Ю	
Эксперт(ы): _ Поко к.т.н.доц. Гокоев Т.М.	

1. Область применения, цели и задачи фонда оценочных средств.

Фонд оценочных средств (ФОС) является неотъемлемой частью рабочей программы дисциплины - «Электротехника и электроника» и предназначен для контроля и оценки образовательных достижений обучающихся (в т.ч. по самостоятельной работе обучающихся, далее – СРО), освоивших программу данной дисциплины.

Целью фонда оценочных средств является установление соответствия уровня подготовки обучающихся требованиям ФГОС ВО по направлению подготовки/специальности 35.03.06 « Агроинженерия»

Рабочей программой дисциплины Б1.0.25 «Электротехника и электроника» предусмотрено формирование следующих компетенций.

УК-1; ИД-1_{УК-1}; ИД-5_{УК-1}

ОПК-1; ИД-1_{ОПК-1}

2. Описание показателей и критериев оценивания компетенций, формируемых в процессе освоения дисциплины.

Показатели компетенций по уровню их сформированности Описание показателей и критериев оценивания компетенций, формируемых в процессе освоения дисциплины, и используемые оценочные средства:

- устный опрос
- коллоквиум
- -зачет

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ.

Показателями оценивания компетенции(-й) являются следующие результаты обучения:

Результаты обучения, соотнесенные с общими результатами освоения образовательной программы

.

Таблица 1 Универсальные компетенции выпускников и индикаторы их достижении.

Компетенция (код наименование)	Индикаторы компетенций (код и наименование)	Результаты обучения
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	ИД-1 _{УК-1} Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи.	Знать: базовые составляющие задачи, ее декомпозицию; методы анализа задач, выделяя ее базовые составляющие, осуществлять декомпозицию задачи. Уметь: выделять базовые составляющие задачи; анализировать задачу, выделять ее базовые составляющие, осуществлять декомпозицию задачи. Владеть: навыками декомпозиции задачи; навыками анализа задач, выделяя ее базовые составляющие, осуществлять декомпозицию задачи.
	ИД-5ук-1- определяет и оценивает последствия возможных решений задачи	Знать: методы критического анализа, адекватные проблемной ситуации; методы определения и оценивания последствий возможных решений задачи; Уметь: выбирать методы критического анализа, адекватные проблемной ситуации; использовать методы определения и оценивания последствий возможных решений задачи. Владеть: навыками применения методов критического анализа, адекватных проблемной ситуации; навыками определения и оценивания последствий возможных решений задачи.

1.2.2. Общепрофессиональные компетенции выпускников и

индикаторы их достижения.

Компетенция (код наименование)	Индикаторы компетенций (код и наименование)	Результаты обучения
ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических, естественнонаучных и общепрофессиональных дисциплин с применением информационно-коммуникационных технологии.	ИД-1 _{ОПК-1} Использует основные законы естественнонаучных дисциплин для решения стандартных задач в соответствии с направленностью профессиональной деятельности	Знать: основные законы математических, естественно- научных и общепрофессиональных дисциплин. Уметь: использовать основные законы естественнонаучных дисциплин для решения стандартных задач в области агроинженерии. Владеть: навыками решения типовых задач агроинженерной деятельности на основе знаний основных законов математических, естественнонаучных и общепрофессио - нальных дисциплин с применением информационно-коммуникационных технологий.

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Порядок оценки освоения обучающимися учебного материала Таблипа 2

	1 аолица <i>2</i>								
№ П / П	раздела дисциплины	Компетенци и (части компетенци й)	Оценочные средства текущего контроля успеваемости	Шкала оценивания					
1	Введение	УК-1; ОПК-1;	Устный опрос	Отлично					
		ИД-1 _{УК-1} ИД-5 _{УК-1}	Коллоквиум (текущий	Хорошо Удовлетворительно					
2	Электрическ ие и магнитные цепи.:	ИД-1 _{ОПК-1} УК-1; ОПК-1; ИД-1 _{УК-1} ИД-5 _{УК-1} ИД-1 _{ОПК-1}	контроль) Устный опрос Коллоквиум (текущий контроль	Неудовлетворительно Отлично Хорошо Удовлетворительно Неудовлетворительно					
3	Электромагнит ные устройства и электрические машины	УК-1; ОПК-1; ИД-1 _{УК-1} ИД-5 _{УК-1} ИД-1 _{ОПК-1}	Устный опрос Коллоквиум (текущий контроль)	Отлично Хорошо Удовлетворительно Неудовлетворительно					
4	Электронные приборы и устройства	УК-1; ОПК-1; ИД-1 _{УК-1} ИД-5 _{УК-1} ИД-1 _{ОПК-1}	Устный опрос Коллоквиум (текущий контроль	Отлично Хорошо Удовлетворительно Неудовлетворительно					

№ П / П	Наименование раздела дисциплины	Компетенци и (части компетенци й)	средства кон	ночные а текущего проля аемости	Шкала оценивания
			Форма	Оценочн	Шкала оценивания
	Итого:	УК-1; ОПК-1; ИД-1 _{УК-1} ИД-5 _{УК-1} ИД-1 _{ОПК-1}	контро ля	ые средства промежу точной аттестации	шкала оцепивания
			Зачет	Вопросы на зачет	Зачтено Не зачтено

4. Показатели уровней сформированности компетенций на этапах их формирования

Результатом освоения дисциплины «Электротехника и электроника» является установление одного из уровней сформированности компетенций: высокий, повышенный, пороговый, недостаточный.

Показатели, критерии и шкалы оценивания компетенций

Показатели компетенций по уровню их сформированности
 Таблица 3

Показатели	Критерий	Шкала оце	енивания	Уровень
компетенций,	оценивания			сформированной
индикаторы				компетенции и
компетенций				индикатора
				компетенций
Знать	Знает	зачтено		высокий
(соответствует				повышенный
таблице 1)				пороговый
	Не знает	не зачтено		недостаточный
Уметь	Умеет	зачтено		высокий
(соответствует				повышенный
таблице 1)				пороговый
	Не умеет	не зачтено)	недостаточный
Владеть	Владеет	зачтено		высокий
(соответствует				повышенный
таблице 1)				пороговый
	Не владеет	не зачтено)	недостаточный

 Соотношение показателей и критериев оценивания компетенций со шкалой оценивания и уровнем их сформированности.

Таблица 4

Показатели		Уровень
		сформированной
компетенций,	Критерий оценивания	компетенции и
индикаторы	Критерии оценивания	·
компетенций		индикатора
		компетенций
Знать	Показывает полные и глубокие знания, логично	высокий
(соответствует	и аргументированно отвечает на все вопросы, в	
таблице 1)	том числе дополнительные, показывает	
	высокий уровень теоретических знаний	
	Показывает глубокие знания, грамотно излагает	повышенный
	ответ, достаточно полно отвечает на все	
	вопросы, в том числе дополнительные. В то же	
	время при ответе допускает несущественные	
	погрешности	
	Показывает достаточные, но не глубокие	пороговый
	знания, при ответе не допускает грубых ошибок	
	или противоречий, однако в формулировании	
	ответа отсутствует должная связь между	
	анализом, аргументацией и выводами. Для	
	получения правильного ответа требуются	
	уточняющие вопросы	
	Показывает недостаточные знания, не способен	недостаточный
	аргументированно и последовательно излагать	
	материал, допускает грубые ошибки,	
	неправильно отвечает на дополнительные	
	вопросы или затрудняется с ответом	
Уметь	Умеет применять полученные знания для	высокий
(соответствует	решения конкретных практических задач,	
таблице 1)	способен предложить альтернативные решения	
	анализируемых проблем, формулировать	
	выводы	
	Умеет применять полученные знания для	повышенный
	решения конкретных практических задач,	
	способен формулировать выводы, но не может	
	предложить альтернативные решения	
	анализируемых проблем	
	При решении конкретных практических задач	Пороговый
	возникают затруднения	_
	Не может решать практические задачи	недостаточный
Владеть	Владеет навыками, необходимыми для	высокий
(соответствует	профессиональной деятельности, способен	
таблице 1)	оценить результат своей деятельности	
	Владеет навыками, необходимыми для	повышенный
	профессиональной деятельности, затрудняется	
	оценить результат своей деятельности	
	Показывает слабые навыки, необходимые для	пороговый
	профессиональной деятельности	1
	Отсутствие навыков	недостаточный
		r 1

5. Оценочные средства и критерии сформированности компетенций

- устный опрос
- тест (для текущего контроля)
- -промежуточный-зачет

5.1 Устный опрос

Устный опрос проводится на каждом занятии в целях закрепления и конкретизации изученного теоретического материала.

Перечень вопросов для устного опроса по дисциплине « Электротехника и электроника».

Тема 1. Электрические цепи постоянного тока

1Электрический ток. Сила тока постоянный ток, закон Ома.

- 2. Топологические понятия электрической цепи.
- 3.ЭДС источника и напряжение на его зажимах.
- 4. Эквивалентные преобразования пассивных элементов электрической цепи постоянного тока
- 5. Работа и мощность электрической цепи, баланс мощностей.
- 6.Законы Кирхгофа.
- 7. Расчет электрической цепи постоянного тока методом контурных токов.

Тема 2. Электрические цепи переменного тока.

- 1.Переменный ток, синусоидальный ток и его основные параметры.
- 2. Расчет электрической цепи переменного тока с R L., векторные диаграммы.
- 3. Расчет электрической цепи переменного тока с R LC , резонанс напряжений.
- 4. Комплексное изображение синусоидальных величин (тока, напряжения, эдс и сопротивления) на комплексной плоскости
- 5.Соединение трехфазной системы звездой, и треугольником, векторная диаграмма.
- 6.Мощности трехфазной системы при симметричной и несимметричной нагрузке фаз
- 7. Анализ электрической цепи с нелинейными элементами..

Тема 3. Магнитные цепи.

- 1. Что называют магнитной цепью, м.д.с., магнитным сопротивлением, магнитным напряжением?
- 2. Закон полного тока для магнитной цепи.
- 3 Расчет неразветвленной магнитной цепи, первый вариант...
- 4. Расчет неразветвленной магнитной цепи, второй вариант.
- 5. Применение законов Кирхгофа для расчета магнитной цепи.
- 6. Переходные процессы в линейных цепях, законы коммутации

Тема 4.Электромагнитные устройства

- 1. Электрические реле.
- 2. Основные требования, предъявляемые к релейной защите.
- 3. Контакторы, магнитные пускатели, автоматические выключатели.
- 4. Цель трансформации напряжения, классификация трансформаторов
- 5. Устройство и принцип действия однофазного трансформатора
- 6. Чем отличается автотрансформатор от обычного трансформатора и чему в этом случая равен его к.п.д.?

Тема 5. Электрические машины постоянного тока

- 1.Область применения, устройство и принцип действия электрических машин постоянного тока.
- 2. Способы пуска машин постоянного тока.
- 3. Механические характеристики машин постоянного тока.
- 4.Основные понятия и область применения электрических машин переменного тока.

Тема 6. Электрические машины переменного тока.

- 1 Устройство и принцип действия асинхронных машин.
- 2. Уравнения электрического состояния статора и ротора.
- 3. Что такое скольжение и чему оно равно?.
- 4. Пуск и ход асинхронного двигателя .
- 5. Потери мощности асинхронного двигателя.
- 6. Изменение скорости вращения асинхронного двигателя (реверсирование).

- 7. Устройство и принцип действия синхронных машин.
- 8. Работа синхронных машин в режиме генератора.
- 9. Коэффициента мощности электроустановок и его повышение.

Тема 6.Электроизмерительные приборы.

- 1.Основные электроизмерительные приборы и техника электрических измерений
- 2.Измерение электрических и неэлектрических величин
- 3. Методы измерений и погрешности при измерениях
- 4. Устройство и принцип действия электромеханических приборов.
- 5. Устройство и принцип действия регистрирующих приборов.

Тема 7.Элементная база современных электронных устройств.

- 1. Классификация и применение электронных и ионных приборов.
- 2.Основные разновидности электрических разрядов в газе.
- 3. Газотрон, устройство и принцип действия
- 4. Полупроводниковые приборы.
- 5. Проводники, полупроводники, изоляторы и их электропроводность.
- 6. Жидко- кристаллические индикаторы.
- 7.Вольт-амперные характеристики и параметры полупроводниковых транзисторов.
- 8. Биполярные транзисторы.
- .9 Тиристоры
- 10. Операционные усилители.
- 11. Стабилизатор напряжения .

Критерии оценки уровня сформированности компетенций для устного опроса:

- оценка «отлично»: обучающимся дан полный, развернутый ответ на поставленный вопрос; в ответе прослеживается четкая структура, логическая

последовательность, отражающая сущность раскрываемых понятий, теорий,

явлений. Знание по дисциплине демонстрируются на фоне понимания его в системе данной науки и междисциплинарных связей. Обучающийся владеет

терминологией, способен приводить примеры, высказывает свою точку

зрения с опорой на знания и опыт;

- оценка «хорошо»: обучающимся дан полный, развернутый ответ на поставленный вопрос, показано умение выделять существенные и несущест-

венные признаки, причинно-следственные связи. Ответ логичен, выстроен, но совершены единичные ошибки. Не в полной мере владеет знаниями по всей дисциплине. Даны ответы на дополнительные, поясняющие вопросы;

- оценка «удовлетворительно»: ответ на вопрос не полный, с ошибками. Обучающийся путается в деталях, с затруднением пользуется профессиональной терминологией. Есть замечания к построению ответа, к логике и последовательности изложения. Не отвечает на дополнительные вопросы;
- оценка «неудовлетворительно»: ответ представляет собой разрозненные знания с существенными ошибками по вопросу, присутствует фрагментарность, нелогичность изложения. Обучающийся не осознает связь обсуждаемого вопроса с другими объектами дисциплины, речь неграмотная, не используется профессиональная терминология. Ответы на дополнительные вопросы не даны или неверные.

5.2. Тестовые задания (для текущего контроля)

Время выполнения -15 мин.

Количество вопросов- 10;

5.3. Тестовые задания. Тестовое задание № 1

- 1. Металлические проводники характеризуются;
- 1) наличием свободных электронов
- 2) наличием свободных ионов
- 3) наличием свободных электронов и ионов
- 4) наличием свободных молекул.
- 2. Можно ли применить уравнение Кирхгофа для расчета простейших цепей смешанного соединения:
 - 1) нельзя
 - 2) можно
 - 3) можно в исключительных случаях
 - 4) Это зависит от количества источников ЭДС
 - 5) Это зависит от количества ветвей.
- 3. Если ток генератора увеличился, то вращающий момент на валу генератора изменится:
 - 1) уменьшится
 - 2) не изменится
 - 3) увеличится
 - 4) сначала увеличится, а потом уменьшится
 - 5) начнёт резко падать
 - 4. Назовите основные единицы измерения в системе СИ:
 - 1) сантиметр, грамм, секунда, ампер
 - 2) метр, килограмм, секунда, ампер

- 3) метр, килограмм, секунда, вольт
- 4) метр, секунда вольт
- 5) грамм, ампер, сантиметр.
- 5. Фазное напряжение генератора 380 В. Обмотки соединены по схеме «звезда». Найдите линейное напряжение:
 - 1) 660 B
 - 2) 380 B
 - 3) 220 B
 - 4) 127 B.
- 6. Может ли ротор асинхронного двигателя раскрутиться до скорости вращения магнитного поля
 - 1).может
 - 2)это зависит от скорости вращения магнитного поля
 - 3)не может
 - 4)это зависит от числа пар полюсов.
- 7. При увеличении скольжения от 0 до 1 вращающий момент асинхронного двигателя:
 - 1) сначала увеличивается, затем уменьшается
 - 2) сначала уменьшается, затем увеличивается
 - 3) увеличивается
 - 4) уменьшается.
- 8. Каков характер движения электрических зарядов в проводнике при переменном токе.
 - 1) вращательный
 - 2) колебательный
 - 3) поступательный
 - 4) медленный
- 9. Как изменится частота вращения двигателя параллельного возбуждения при обрыве обмотки возбуждения в режиме холостого хода:
 - 1) двигатель останавливается
 - 2) частота резко падает
 - 3) частота резко возрастает
 - 4) двигатель пойдёт в разнос
- 10. В цепи с активным сопротивлением энергия источника преобразуется в энергию:
 - 2)магнитного поля
 - 3)тепловую
 - 4)электрического поля.

- 1. Если увеличить площадь поперечного сечения проводника, то его проводимость изменится:
 - 1) увеличится
 - 2) уменьшится
 - 3) не изменится
 - 4) Для ответа на вопрос недостаточно данных;
- 2. У кольцевой катушки изменили диаметр каркаса, не изменяя намагничивающую силу и средний радиус кольца. Как это повлияет на магнитное состояние катушки?
 - 1) изменится значение В, для средней линии
 - 2) изменится Ф
 - 3) изменится значение Н для средней линии
 - 4) Изменится величина тока.
- 3. При каком напряжении целесообразно а)передавать электроэнергию, б)потреблять электроэнергию:
 - 1) а)низком, б) высоком.
 - 2) это зависит от характера тока.
 - 3) а)высоком, б) низком
 - 4) Нет достаточных данных для ответа.
- 4. При работе холостого хода к.п.д. двигателя равен:
 - 1) 90%
 - 2) 0

- 3) для ответа на вопрос недостаточно данных
- 4) 30%
- 5. Какие приборы дают возможность точно зафиксировать режим резонанса напряжений:
 - 1) амперметр
 - 2) вольтметр амперметр
 - 3) вольтметр
 - 4) ваттметр
- 6. К трансформатору тока нельзя подключать прибор:
 - 1) ваттметр
 - 2) амперметр
 - 3) вольтметр
 - 4) Мультивибратор
- 7. Чему равно сопротивление конденсатора без потерь постоянному току:
- 1) ∞ (бесконечности)
- 2) 0 (нулю)
- 3) это зависит от емкости конденсатора
- 4) Это зависит от величины тока.
- 8. Укажите правильное определение фазы:
 - 1) фазой называют часть многофазной цепи
 - 2) фаза и аргумент синуса угла и часть электрической цепи
 - 3) фазой называют аргумент синуса
 - 4) Фазой называют аргумент тангенса.
- 9. В симметричной трехфазной цепи U_{ϕ} =220 В, I_{ϕ} =5A $\cos \varphi$ =0,8. Определить активную мощность в 3-хфазной цепи:
 - 1) 1,1 кВт
 - 2) 2,63 кВт
 - 3) 0,88 кВт
 - 4) Нет достаточных данных для ответа.
- 10. Если известна величина магнитодвижущей силы ω I и прочие необходимые условия, по какой магнитной задаче можно определить магнитный поток Φ :
 - 1) по обратной магнитной задаче
 - 2) по прямой магнитной задаче
 - 3) и по прямой и по обратной
 - 4) Нет достаточных данных для ответа.

- 1. В трехфазной цепи U_b=220 В; I_п= 2A; P=380 Вт. Определить соз φ |:
 - 1) $\cos \varphi = 0.5$
 - 2) $\cos \varphi \neq 0.8$
 - 3) $\cos \varphi = 0.6$
 - 4) $\cos \varphi \not\models = 1$
- 2. С какой целью двигатель с фазной обмоткой ротора снабжают конткактными кольцами и щетками:
 - 1) для подключения двигателя и сети
 - 2) для соединения ротора с регулировочными реостатами
 - 3) для отключения двигателя от сети
 - 4) Для защиты от перегрузки
- 3. Трансформаторы применяют:
 - 1) в автоматике и измерительной технике
 - 2) в линиях электропередачи и связи
 - 3) во всех перечисленных и многих других областях техники
- 4) Нет достаточных данных для ответа.
- 4. Чем отличается автогенератор от усилителя:
 - 1) видом усилительного элемента
 - 2) наличием положительной обратной связи
 - 3) характером нагрузки
 - 4) Усилительными свойствами
- 5. Какой характеристикой источника является ЭДС силовой или энергетической:
 - 1) энергетической
 - 2) силовой
 - 3) силовой и энергетической
 - 4) Нет достаточных данных для ответа.
- 6. При каком соотношении между t и T (период переменного тока) нельзя воспользоваться формулой W=Pt для определения расхода энергии за время t:

- 1) t > T
- t = kT
- 3) $t < \kappa (\kappa$ целое положительное число)
- 4) Нет достаточных данных для ответа.
- 7. По какой формуле можно определить ЭДС, индуктируемую в катушке генератора:e = -wdФ/dt
 - 1) $e = -d\Phi/dt$
 - 2) $e = -B \varphi / dt$
 - 3) Нет достаточных данных для ответа.
- 8. В машинах постоянного тока применяют принудительное охлаждение с целью:
 - 1) для увеличения размеров и массы машин
 - 2) для уменьшения размеров и массы машин
 - 3) во избежание перегрева машины
 - 4) Нет достаточных данных для ответа
- 9. Если подключить катушку к источнику постоянного тока сначала с вставленным сердечником из меди, а затем без него, то магнитный поток катушки быстрее достигует до установившегося значения:
 - 1) с сердечником
 - 2) в обоих случаях скорость одинакова
 - 3) без сердечника
 - 4) Нет достаточных данных для ответа
- 10. По какой магнитной задаче можно определить МДС ω I при прочих известных условии необходимую для возбуждения в данной магнитной цепи определенного магнитного потока Φ :
 - 1) по обратной магнитной задаче
 - 2) по прямой магнитной задаче
 - 3) и по прямой и по обратной
 - 4) Нет достаточных данных для ответа

- 1. Какой параметр переменного тока необходимо знать дополнительно, чтобы по векторной диаграмме получить полное представление о переменном токе:
 - 1) угловую частоту
 - 2) начальную фазу
 - 3) действующие значения
 - 4) для ответа нет достаточных данных
- 2. Из какой стали должен выполняться якорь генератора переменного тока:
 - 1) из магнитотвердой
 - 2) из магнитомягкой
 - 3) из любой
 - 4) для ответа нет достаточных данных
- 3. Укажите единицу потокосцепления в системе СИ:
 - 1) A/M
 - 2) $B 6/M^2$
 - 3) Вб
 - 4) для ответа нет достаточных данных
- 4. При неизменном магнитном потоке возбуждения ток в обмотке якоря увеличился. Как изменится вращающий момент двигателя:
 - 1) уменьшится
 - 2) увеличится
 - 3) не изменится
 - 4) для ответа нет достаточных данных
- 5. Как зависит количество связей графа от количества ветвей, узлов и контуров схемы:
 - 1) равно общему количеству контуров схемы
 - 2) равно числу ветвей
 - 3) равно числу узлов
 - 4) для ответа нет достаточных данных
- 6. Какая из формул для определения в проводнике является наиболее универсальной:
 - 1) $Q=U^2t/R$
 - 2) $Q=I^2Rt$
 - 3) Q=W
 - 4) для ответа нет достаточных данных
- 7. При увеличении скольжения от 0 до 1 вращающий момент асинхронного двигателя:
 - 1) сначала увеличивается, затем уменьшается
 - 2) сначала уменьшается, затем увеличивается
 - 3) увеличивается
 - 4) Остается неизменным

- 8. Как повлияет увеличение расстояния между анодом и катодом на значение R_i:
 - 1) R_i не изменится
 - 2) R_i увеличится
 - 3) R_i уменьшится
 - 4) R_i увеличится затем уменьшится.
- 9. Для 3-хфазового двигателя, подключаемого к однофазной сети требуется большая пусковая емкость в случае:
 - 1) соединении обмотки звездой
 - 2) одинаковая в обоих случаях
 - 3) соединении обмотки треугольником
 - 4) Это зависит от величины емкости
- 10. Что произойдет, если тормозной момент на валу асинхронного двигателя превысит максимальный вращающий момент:
 - 1) скольжение уменьшится до нуля
 - 2) скольжение увеличится до единицы
 - 3) скольжение будет равно
 - 4) для ответа нет достаточных данных

- 1. Что произойдет, если двигатель последовательного возбуждения подключить к сети при отключенной механической нагрузке на валу:
 - 1) двигатель войдет «вразнос»
 - 2) обмотка якоря перегреется
 - 3) двигатель не запустится
 - 4) для ответа нет достаточных данных
- 2. ЭДС индукции в катушке достигает максимума, когда ток проходить через:
 - 1) максимум
 - 2) нулевое значение
 - 3) мгновенное значение
 - 4) Минимальное значение.
- 3. При заданной мощности выгоднее передать энергию при напряжении:
 - 1) безразлично
 - 2) при повышении
 - 3) при понижении
 - 4) Это зависит от длины линии
- 4. Известно, что сопротивление проводника $R = \rho \frac{l}{S}$. На каждой из параметров этой формулы влияет

поверхностный эффект:

- 1) 1
- ρ
- 3) S
- 4) R
- 5. На какие точки и напряжения включают ваттметры при измерении мощности в трехфазной цепи с нулевым проводом:
 - 1) на линейные токи и фазные напряжения
 - 2) фазные
 - 3) линейные
 - 4) для ответа нет достаточных данных
- 6. Ток в нулевом проводе при симметричной трехфазной системе токов равен:
 - 1) току фазы
 - 2) значению, меньшему суммы действующих значений фазных токов
 - нулю
 - 4) равен бесконечности
- 7. Какая формула для определения мощности переменного тока неверна?
 - 1)P= UIsin φ ;
 - 2) $Q = UI\sin \varphi$;

3) S=
$$\sqrt{P^2 + Q^2}$$

- 4) для ответа нет достаточных данных
- 8. Твердый диэлектрик в состоянии пробое характеризуется признаками:
 - 1) Наличием свободных ионов;
 - 2) Наличием свободных электронов;
 - 3) Наличием свободных электронов и ионов.
- 9. Какая из приведенных мер не окажет влияния на крутизну анодно-сеточной характеристики лампы:
 - 1) изменение расстояния между сеткой и катодом

- 2) изменение размеров катода
- 3) изменение напряжения на аноде
- 4) для ответа нет достаточных данных
- 10. При неизменном магнитном потоке возбуждения ток в обмотке якоря увеличился. Как изменился вращающий момент двигателя:
 - 1) не изменился
 - 2) увеличился
 - 3) уменьшился
 - 4) для ответа нет достаточных данных

- 1. Назовите основные единицы измерения в системе СИ:
 - 1) метр, килограмм, секунда, ампер
 - 2) сантиметр, грамм, секунда, ампер
 - 3) метр, килограмм, секунда, вольт
 - 4) Метр, килограмм, час
- 2. Укажите основное назначение коллектора:
 - 1) крепление обмотки якоря
 - 2) выпрямление переменного тока в секциях обмотки
 - 3) электрическое соединение вращающейся обмотки якоря с неподвижными клеммами машины
 - 4) Для соединения с фазными проводами
- 3. Реактивное сопротивление в режиме резонанса влияет на ток:
 - 1) слабо
 - сильно
 - 3) совсем не влияет.
 - 4)Влияние сопротивления зависит от величины тока
- 4. Укажите основные конструктивные детали машины постоянного тока:
 - 1) индуктор, якорь, коллектор, вентилятор
 - 2) индуктор, якорь, коллектор, щетки
 - 3) статор, главные полюсы, дополнительные полюсы, якорь, коллектор
 - 4) Статор, коллектор, щетки
- 5. Почему магнитопровод набирают из тонких листов электротехнической стали, изолированных лаком друг от друга:
 - 1) для уменьшения потерь на вихревые токи
 - 2) для уменьшения потерь на перемагничивание
 - 3) из конструктивных соображений
 - 4) Для уменьшения габаритов магнитопровода
- 6. Может ли геометрическая сумма линейных тонов быть отличной от 0 при отсутствии нулевого провода?
 - 1) может
 - 2) это зависит от линейных тонов
 - 3) не может
 - 4) Это зависит от линейных напряжений.
- 7. Можно ли магнитоэлектрический прибор использовать для измерения в целях переменного тока?
 - 1) можно, если прибор подключить через выпрямительную систему
 - 2) можно
 - 3) нельзя
 - 4) Это зависит от величины измеряемой величины
- 8. Точно зафиксировать режим резонанса дают приборы:
 - 1) вольтметр
 - 2) амперметр
 - 3) амперметр и вольтметр
 - 4) Ваттметр
- 9. Чем определяется ЭДС при холостом ходе генератора последовательного возбуждения:
 - 1) остаточной намагниченностью полюсов
 - 2) скоростью вращения якоря
 - 3) остаточной намагниченностью полюсов и скоростью вращения якоря
 - 4) Скоростью вращения магнитного поля внутри статора
- 10. Основным недостатком однополупериодного выпрямителя является:
 - 1) отсутствие тока в нагрузочном резисторе
 - 2) отсутствие тока и напряжения на нагрузочном резисторе в течение половины периода
 - 3) отсутствие напряжения в нагрузочном резисторе
 - 4) Это зависит от скорости вращения ротора

- 1. Реактивное сопротивление в режиме резонанса влияет на ток:
 - 1) совсем не влияет
 - сильно
 - 3) слабо
 - 4) Влияние сопротивления зависит от величины тока
- 2. Симметричная нагрузка соединена звездой линейное напряжение U_n =220 В. Определить фазное напряжение:
 - 1) $U_{\phi} = 220 \text{ B}$
 - 2) $U_{\phi} = 127 \text{ B}$
 - 3) $U_{\phi} = 380 \text{ B}$
 - 4) для ответа нет достаточных данных
- 3. Для питания электроэнергией жилые помещения используют трансформаторы:
 - 1) специальные
 - 2) измерительные
 - 3) силовые
 - 4) для ответа нет достаточных данных
- 4. Линейное напряжение U_n =380 В. Определить фазное напряжение, если симметричная нагрузка соединена треугольником:
 - 1) $U_{\pi}=330 \text{ B}$
 - 2) $U_{\pi}=380 \text{ B}$
 - 3) $U_{\pi}=127 \text{ B}$
 - 4) для ответа нет достаточных данных
- 5. На каком законе основан принцип действия трансформатора:
 - 1) на законе электромагнитной индукции
 - 2) на законе Ампера
 - 3) на законе Ленца
 - 4) На законе Джоуля Ленца
- 6. Для электроизмерительных приборов характерны достоинства:
 - 1) возможность передачи показаний на дальние расстояния
 - высокая точность и надежность работы и удобства сопряжения с вычислительными машинами и устройствами автоматики
 - 3) все перечисленные достоинства
 - 4) для ответа нет достаточных данных
- 7. Какое явление называют реакцией якоря:
 - 1) уменьшение ЭДС обмотки якоря при увеличении нагрузки
 - 2) воздействие магнитного поля якоря на основное магнитное поле полюсов
 - 3) уменьшение магнитного поля машины при увеличении нагрузки
 - 4) Увеличение магнитного поля машины при уменьшении нагрузки
- 8. В металле в процессе электростатической индукции могут перемещаться заряды:
 - 1) положительные ионы
 - 2) электроны
 - 3) и электроны и ионы
 - 4) Молекулы
- 9. Что называют якорем:
 - 1) неподвижная часть
 - 2) вращающуюся часть машины
 - 3) часть машины, в которой индуцируется ЭДС
 - 4) для ответа нет достаточных данных
- 10. При каком напряжении целесообразно:
- а) передавать электроэнергию:
- б) потреблять электроэнергию:
- 1) а) низком
- б) высоком

3) это зависит от характера тока

4) . а) высоким; б) высоким

2) а) высоком б) низком

- 1. Линейные напряжения U_π =220 В. Определить фазное напряжение, если симметричная нагрузка соединена треугольником:
 - 1) $U_{\phi}=220 \text{ B}$
 - 2) $U_{\phi} = 380 \text{ B}$
 - 3) $U_{\phi}=127 \text{ B}$
 - 4) для ответа нет достаточных данных

- 2. Как изменится общий магнитный поток Ф, если увеличить воздушный зазор в сердечнике:
 - 1) увеличится
 - 2) уменьшится
 - 3) не изменится
 - 4) для ответа нет достаточных данных
- 3. Скорость вращения двигателя уменьшилось. Как изменилась ЭДС, индуктируемая в обмотке якоря:
 - 1) увеличилась
 - 2) в двигателе ЭДС не индуктируется
 - 3) уменьшилась
 - 4) для ответа нет достаточных данных
- 4. Какие приборы дают возможность точно зафиксировать режим резонанса напряжений:
 - 1) вольтметр амперметр
 - 2) амперметр
 - 3) вольтметр
 - 4) ваттметр
- 5. потребляется ли энергия контуров при резонансе токов, если R_{κ} =0:
 - 1) нет
 - 2) это зависит от соотношений между L и C
 - 3) да
 - 4) Это зависит от соотношения L / C
- 6. Какая из формул для определения количества теплоты, выделяющийся в проводнике является наиболее универсальной:
 - 1) $Q=U^2t/R$
 - 2) $Q=I^2 Rt$
- 3) Q= W
 - 3) для ответа нет достаточных данных
- 7. Если в генераторе с двумя парами полюсов витки сдвинуты в пространстве на угол $\Pi/4$, то сдвиг фаз между ЭДС в этих витках определяется: $\Pi/2$
 - Π/4
 - Π/8
 - 3) Π/2
 - π/6
- 8. Как изменится количество теплоты, выделяющейся в нагревательном приборе, при ухудшении контакта в штепсельной розетке:
 - 1) увеличится
 - 2) уменьшится
 - 3) не изменится
 - 4) Сначала увеличится, затем уменьшится
- 9. Если в середине линии произойдет короткое замыкание, то в конце линии напряжение изменится:
 - 1) уменьшится
 - 2) станет равным нулю
 - 3) не изменится
 - 4) увеличится
- 10. При анализе и расчете сложных цепей переменного тока применяются (указать на неправильный ответ):
 - 1) законы Кирхгофа
 - 2) метод контурных тонов
 - 3) закон Джоуля Ленца
 - 4) для ответа нет достаточных данных

- 1. Укажите одно из важнейших достоинств цепей переменного тока по сравнению с цепями постоянного тока:
 - 1) возможность изменения напряжения и тока с помощью трансформатора
 - 2) возможность преобразования электроэнергии в тепловую и механическую
 - 3) возможность передачи электроэнергии на дальние расстояния

- 4) для ответа нет достаточных данных
- 2. При постоянной ЭДС генератора нагрузки линейные токи могут меняться за счет:
 - 1) изменения фазных и линейных напряжений
 - 2) изменение фазных напряжений
 - 3) изменение линейных напряжений
 - 4) для ответа нет достаточных данных
- 3. Было установлено, что закон Ома неприменим к нелинейным цепям. Применимы ли к нелинейным цепям законы Кирхгофа:
 - 1) нет
 - 2) это зависит от рода тока
 - 3) да
 - 4) для ответа нет достаточных данных
- 4. В симметричной трехфазной цепи U_{φ} =220 В, I_{φ} =5A, cos4=0,8. Определить активную мощность в 3-хфазной цепи:
 - 1) 1,1 кВт
 - 2) 0,88 кВт
 - 3) 2,62 кВт
 - 4) для ответа нет достаточных данных
- 5. Каким будет мгновенное значение напряжение на конденсаторе при максимальном значении тока:
 - 1) равным нулю
 - 2) максимальным
 - 3) параметр U_c зависит от x_c
 - 4) для ответа нет достаточных данных
- 6. При постоянной ЭДС генератора и неизменных сопротивлениях нагрузки линейные токи могут меняться за счет:
 - 1) изменения фазных и линейных напряжений
 - 2) изменения линейных напряжений
 - 3) изменения фазных напряжений
 - 4) для ответа нет достаточных данных
- 7. При работе холостого хода к.п.д. двигателя равен:
 - 1) 0
 - 2) 90%
 - 3) для ответа на вопрос недостаточно данных
- 8. Какой из параметров катушки сильнее всего влияет на ее продуктивность:
 - 1) площадь сечения s
 - 2) число витков w
 - 3) длина L
 - 4) для ответа нет достаточных данных
- 9. В металле в процессе электростатической индукции могут перемещаться заряды:
 - 1) и электроны и ионы
 - 2) положительные ионы
 - 3) Электроны
 - 4) Молекулы
- 10. Если увеличить площадь поперечного сечения проводника, то его проводимость изменится:
 - 1) уменьшится
 - 2) увеличится
 - 3) не изменится
 - 4) для ответа нет достаточных данных

1. При изменении тока, проходящего через проволочное сопротивление, меняется температура этого сопротивления. Применим ли закон Ома к такому сопротивлению:

- 1) это зависит от значения температурного коэффициента сопротивления α
- нет
- 3) да
- 4) Это зависит от длины проводника
- 2. Каково основное назначение коллектора:
 - 1) электрическое соединение вращающейся обмотки якоря с неподвижными клеммами машины
 - 2) выпрямление переменного тока в секциях обмотки
 - 3) крепление обмотки якоря
 - 4) Крепление обмотки к фазным проводам
- 3. Что произойдет, если тормозной момент на валу асинхронного двигателя превысит максимальный вращающий момент:
 - 1) скольжение будет равно оптимальному значению
 - 2) скольжение уменьшится до 0
 - 3) скольжение увеличится до единицы\
 - 4) для ответа нет достаточных данных
- 4. Укажите формулу, расчет по которой дает возможность отличить RC-цепь от RL-цепи:

1)
$$Z_{RL} = \sqrt{R^2 + X_L^2}; Z_{RC} = \sqrt{R^2 + X_C^2}$$

- 2) $Q=UI\cos \varphi$
- 3) $P=UI\sin \varphi$
- $S = \sqrt{P^2 + Q^2}$
- 5. Как изменится резонансная частота колебательного контура, если емкость увеличится в 4 раза:
 - 1) уменьшится в 2 раза
 - 2) уменьшится в 4 раза
 - 3) увеличится в 2 раза
 - 4) Увеличится в 4 раза
- 6. Нужны ли кольца и щетки, если ротор синхронного двигателя изготовлен в виде электромагнита:
 - 1) нужны в исключительных случаях
 - 2) не нужны
 - 3) нужны
 - 4) Это зависит от скорости вращения ротора
- 7. Автотрансформатор от трансформатора отличается принципиально:
 - 1) электрическим соединением первичной и вторичной обмотки
 - 2) малым коэффициентом трансформации
 - 3) возможностью изменения коэффициента трансформации
 - 4) Автотрансформатор от трансформатора отличается принципиально
- 8. Лампы накаливания с номинальным напряжением 220 В включает в трехфазную сеть с линейным напряжением 220 В. Определить схему соединения ламп:
 - 1) звездой
 - 2) треугольником
 - 3) звездой с нулевым проводом
 - 4) для ответа нет достаточных данных
- 9. Может ли ток в нулевом проводе четырехпроходной цепи равняться нулю:
 - 1) не может
 - 2) всегда равен нулю
 - 3) может
 - 4) для ответа нет достаточных данных
- 10. Сколько уравнений можно составить по второму закону Кирхгофа для разветвленной магнитной цепи:
 - 1) количество уравнений равно числу узлов
 - 2) составляется число уравнений, равное числу ветвей, за вычетом числа уравнений составленных по первому закону Кирхгофа.
 - 3) Количество уравнений равное числу контуров
 - 4) для ответа нет достаточных данных

- 1. Каким правилом определяется направление силовых линий магнитного поля, возникающего вокруг проводника с током:
 - 1) правилом буравчика
 - 2) правилом левой руки
 - 3) правилом правой руки
 - 4) для ответа нет достаточных данных
- 2. Как изменяются потери мощности на вихревые токи ΔP_B и на гистерезис $\Delta P_{\rm r}$, если сердечник электромагнита, выполненный из электротехнической стали с толщиной листов 0,5 мм, заменить сердечником из той же стали, но с толщиной листов 0,35 мм:
- 1) ΔP_{B} увеличатся
- 2) $\Delta P_{\rm B}$ -уменьшатся
- 3) ΔP_{r} уменьшатся
- 4) для ответа нет достаточных данных
- 3. Влияет ли направление обхода контура на конечный результат при использовании закона полного тока:
 - влияет
 - 2) зависит от направления обхода контура
 - 3) не влияет
 - 4) Зависит от направления токов
- 4. Для определения МДС ω I обмотки, необходимую для возбуждения в данной магнитной цепи определенного магнитного потока Φ должны быть известны:
 - 1) конфигурация воздушного зазора и материал магнитопровода
 - 2) материал обмотки
 - 3) размеры и конфигурации воздушного зазора
 - 4) для ответа нет достаточных данных
- 5. Сколько уравнений можно составить по первому закону Кирхгофа для расчета сложной цепи постоянного тока:
 - 1) это зависит от числа узлов
 - 2) это зависит от числа контуров
 - 3) это зависит от числа ветвей
 - 4) для ответа нет достаточных данных
- 6. Как изменить направление вращения результирующего магнитного поля:
 - 1) это невозможно
 - 2) это зависит от вращающего момента
 - 3) изменить порядок следования фаз токов
 - 4) Изменением подводимого напряжения
- 7. На заводском щитке машины сепии Π указано ее номинальное напряжение, равное 220 В. Какая это машина:
 - 1) двигатель постоянного тока
 - 2) генератор постоянного тока
 - 3) для ответа на вопрос недостаточно данных
 - 4) Асинхронный двигатель
- 8. Как изменится ЭДС самоиндукции при подключении катушки к источнику постоянного тока:
 - 1) увеличится
 - 2) уменьшится
 - 3) не изменится
 - 4) Станет равным нулю
- 9. можно ли с помощью двух источников синусоидального ЭДС получить несинусоидальное напряжение:
 - 1) можно, если источники имеют одинаковую частоту
 - нельзя
 - 3) можно, если источники имеют разную частоту
 - 4) Можно, если частота меняется с течением времени
- 10. Чему равно сопротивление конденсатора без потерь постоянному току:

- 1) 0
- 2) \propto
- 3) это зависит от емкости конденсатора
- 4) Зависит от величины тока

- 1. При прочих неизменных условиях напряжение, подведенное к обмотке якоря, уменьшилось. Как изменилась скорость вращения двигателя:
 - 1) уменьшилась
 - 2) увеличилась
 - 3) не изменилась
 - 4) для ответа нет достаточных данных
- 2. Укажите параметр переменного тока, от которого зависит индуктивное сопротивление катушки:
 - 1) фаза напряжения ψ
 - 2) период переменного тока Т
 - 3) действующее значение напряжения U
 - 4) Частота переменного тока
- 3. При неизменном магнитном потоке возбуждения ток в обмотке якоря увеличился. Как изменился вращающийся момент двигателя:
 - 1) уменьшился
 - 2) не изменился
 - 3) увеличился
 - 4) для ответа нет достаточных данных
- 4. Может ли ротор асинхронного двигателя раскрутиться до скорости вращения магнитного поля:
 - 1) может
 - 2) не может
 - 3) это зависит от скорости вращения магнитного поля
 - 4) для ответа нет достаточных данных
- 5. Как изменится ЭДС самоиндукции при подключении катушки к источнику постоянного напряжения:
 - 1) уменьшится
 - 2) увеличится
 - 3) останется неизменным
 - 4) Это зависит от габаритов катушки
- 6. Какое явление называют реакцией якоря:
 - 1) уменьшение магнитного поля машины при увеличении нагрузки
 - 2) воздействие магнитного поля якоря на основное магнитное поле полюсов
 - 3) уменьшение ЭДС обмотки якоря при увеличении нагрузки
- 4) увеличение магнитного поля машины при уменьшении нагрузки.
- 7. Увеличение магнитного поля машины при уменьшении нагрузки.
 - 1) индуктивность катушки не зависит ни от I, ни от $\Psi_{\rm L}$
 - 2) индуктивность катушки зависит только от I
 - 3) индуктивность катушки зависит только от $\Psi_{\rm L}$
 - 4) для ответа нет достаточных данных
- 8. После отключения источника энергии прошло время $t=10~\tau$, чему равно напряжение конденсатора:
 - 1) $U_c = Ue^{10}$
 - 2) $U_c = U/e^{10}$
 - 3) $U_{c=}U/e$
 - 4) для ответа нет достаточных данных
- 9. Что произойдет, если двигатель последовательного возбуждения подключить к сети при отключенной механической нагрузке на валу:
 - 1) обмотка якоря перегреется
 - 2) двигатель не запустится
 - 3) двигатель войдет «вразнос»
 - 4) для ответа нет достаточных данных
- 10. Какая из приведенных соотношений для синусоидального переменного тока содержит ошибку:

- 1) $U=U_{m}/\sqrt{2}$
- 2) $U>U_m$

- 1. Можно ли так подобрать два нелинейных элемента, чтобы их общая вольт -амперная характеристика стала линейной:
 - 1) можно
 - нельзя
 - 3) это зависит от величины сопротивления нелинейного элемента
 - 4) Это зависит от нелинейности элемента
- 2. При прочих неизменных условиях напряжение, подведенное к обмотке якоря, уменьшилось. Как изменилась частота вращения двигателя:
 - 1) не изменилась
 - 2) уменьшилась
 - 3) увеличилась
 - 4) Увеличилась до бесконечности
- 3. Указать основные недостатки асинхронного двигателя:
 - 1) низкий КПД
 - 2) зависимость скорости вращения от момента нагрузки на валу двигателя
 - 3) отсутствие экономичных устройств для плавного регулирования скорости вращения ротора
 - 4) Низкая скорость вращения ротора
- 4. Всегда ли сумма токов фаз равняется нулю при отсутствии нулевого провода:
 - 1) не всегда
 - 2) всегда
 - 3) в исключительных случаях
 - 4) Это зависит от рода тока.
- 5. Какие материалы используют для изготовления короткозамкнутой обмотки ротора:
 - 1) алюминий, медь
 - 2) алюминий
 - 3) медь, электрическую сталь
 - 4) Железо
- 6. Какой прибор используют для измерения электрической мощности:
 - 1) вольтметр
 - 2) амперметр
 - 3) ваттметр
 - 4) Гальванометр
- 7. Нужны ли щетки и контактные кольца для синхронного двигателя, ротор которого представляет собой постоянный магнит:
 - 1) не нужны
 - нужны
 - 3) нужны иногда
 - 4) для ответа нет достаточных данных
- 8. В трехфазной цепи U_{π} =220 В; I_{π} =2 А; P=380 Вт. Определить $\cos \varphi$:
 - 1) $\cos \varphi = 0.5$
 - 2) $\cos \varphi = 0.8$
 - 3) $\cos \varphi = 0.6$
 - 4) $\cos \varphi = 1$
- 9. На каком законе основан принцип действия трансформатора:
 - 1) на законе Ампера
 - 2) на законе Ленца
 - 3) на принципе электромагнитной индукции
 - 4) На законе Джоуля -Ленца
- 10. Как изменятся потери мощности на вихревые токи ΔP_B и на гистерезис ΔP_r , если сердечник электромагнита, выполненный из электрической стали с толщиной листов 0,5 мм заменить сердечником из той же стали, но с толщиной листов 0,35 мм:
- 1) ΔP_{r} увеличится

- 2) $\Delta P_{\rm B}$ уменьшится
- 3) ΔP_B увеличится
- 4) для ответа нет достаточных данных

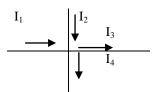
- 1. С какой целью двигатель с фазной обмоткой ротора снабжают контактными кольцами и щетками:
 - 1) для соединения ротора с регулированными реостатами
 - 2) для подключения двигателя к сети
 - 3) для отключения двигателя от сети
 - 4) Для уменьшения габаритов двигателя
- 2. Напряжение на зажимах асинхронного двигателя уменьшилось в 2 раза. Как изменится его вращающий момент:
 - 1) уменьшится в 2 раза
 - 2) уменьшится в 4 раза
 - 3) не изменится
 - 4) Уменьшится в 6 раз
- 3. К трансформатору тока нельзя подключить прибор:
 - 1) амперметр
 - 2) ваттметр
 - 3) вольтметр
 - 4) Частотомер
- 4. Чем определяется ЭДС при холостом ходе генератора последовательного возбуждения:
 - 1) остаточной намагниченностью полюсов
 - 2) остаточной намагниченностью полюсов и скоростью вращения якоря
 - 3) скоростью вращения якоря
 - 4) Скоростью вращения магнитного поля в статоре.
- 5. Главными магнитными свойствами являются:
 - 1) малое магнитное сопротивление
 - 2) способность насыщаться
 - 3) способность сохранять остаточную намагниченность
 - 4) Большое магнитное сопротивление
- 6. Симметричная трехфазная нагрузка соединена треугольником. Фазный ток 20А. Чему равен линейный ток:
 - 1) 40A
 - 2) 20A
 - 3) 34,6A
 - 4) для ответа нет достаточных данных
- 7. Почему сердечник вращающегося якоря набирают из тонких листов электротехнической стали, изолированных друг от друга:
 - 1) для уменьшения магнитного сопротивления потоку возбуждения
 - 2) для уменьшения тепловых потерь в машине
 - 3) из конструктивных соображений
 - 4) для ответа нет достаточных данных
- 8. По мере раскручивания ротора ток в обмотке ротора будет изменяться:
 - 1) останется неизменным
 - 2) уменьшится
 - 3) увеличится
 - 4) увеличится медленно
- 9. Как изменится ток в измерительной диагонали уравновешенного моста, если напряжение питания уменьшится:
 - 1) уменьшится
 - 2) увеличится
 - 3) останется равным нулю
 - 4) Изменится частично
- 10. Ток генератора увеличился. Как изменился его вращающийся момент на валу генератора:
 - 1) не изменился

- 2) увеличился
- 3) уменьшился
- 4) Изменится частично

- 1. Для увеличения пускового момента у двигателя с фазным ротором применяют:
 - 1) в цепь обмотки ротора вводят пусковые реостаты
 - 2) применяют ротор с двойной «беличьей клеткой»
 - 3) применяют ротор с глубоким пазом
 - 4) для ответа нет достаточных данных
- 2. Чему равно напряжение конденсатора, если после отключения источника энергии прошло время $t=1\ \tau$:
 - 1) $U_c = U/e^{10}$
 - 2) $U_c=U/e$
 - 3) $U_c = U/e^3$
 - 4) для ответа нет достаточных данных
- 3. В цепи с активным сопротивлением энергия источника преобразуется в энергию:
 - 1) магнитного поля
 - 2) электрического поля
 - 3) тепловую
 - 4) Электромагнитного поля
- 4. Потребляется ли энергия контуров при резонансе токов, если R=0:
 - 1) это зависит от соотношений между L и C
 - нет
 - 3) да
 - 4) Это зависит от X_L
- 5. Как изменятся потери мощности в стальном сердечнике и ЭДС катушки, если увеличить частоту при неизменном напряжении сети:
 - 1) Р уменьшится
 - 2) Е увеличится
 - 3) Р увеличится
 - 4) для ответа нет достаточных данных
- 6. Как изменить направление вращения магнитного поля 3-хфазного тока:
 - 1) нужно поменять местами все три фазы
 - 2) это невозможно
 - 3) нужно поменять местами две любые фазы
 - 4) для ответа нет достаточных данных
- 7. Точность измерения измерительных приборов характеризуется:
 - 1) относительной погрешностью измерения
 - 2) условиями эксперимента
 - 3) точностью отсчета
 - 4) Точность измерения измерительных приборов характеризуется
- 8. В пазах якоря рассматриваемой машины уложено 460 проводников простой петлевой обмотки. Определить ЭДС, индуцируемую в обмотке якоря:
 - 1) E = 230 B
 - 2) E = 115 B
 - 3) Задача не определена, так как неизвестно число параллельных ветвей обмотки якоря
 - 4) E=1 10B
- 9. Какова частота пересечения силовыми линиями магнитного поля стержней обмотки неподвижного ротора:
 - 1) минимальная
 - 2) равна нулю
 - 3) максимальная
 - 4) для ответа нет достаточных данных
- 10. ЭДС индукции в катушке достигает максимума, когда ток имеет:
 - 1) максимум
 - 2) нулевое значение

- 3) мгновенное значение
- 4) Действующее значение

- 1. При прочих неизмененных условиях напряжение, подведенное к обмотке якоря, уменьшилось. Как изменилась скорость вращения двигателя:
 - 1. уменьшилась.
 - 2. увеличилась.
 - 3. не изменилась.
 - 4. для ответа нет достаточных данных
- 2. Металлические проводники характеризуются:
 - 1. наличием свободных ионов.
 - 2. наличием свободных электронов.
 - 3. наличием электронов и ионов.
 - 4. для ответа нет достаточных данных
- 3. Какие приборы дают возможность точно зафиксировать режим резонанса напряжений:
 - 1. вольтметр.
 - 2. вольтметр амперметр.
 - 3. амперметр.
- 4. Ваттметр
- 4. Как изменятся потери мощности в стальном сердечнике и ЭДС самоиндукции, включенной в сеть переменного тока, если увеличить напряжение на катушке при неизменной частоте:
 - 1. Δ P не изменяется.
 - 2. ΔP увеличивается.
 - 3. Е не уменьшается.
- 5. При заданной мощности выгоднее передать энергию при напряжении:
 - 1. при повышенном.
 - 2. при пониженном.
 - 3. безразлично.
 - 4. Это зависит от длины линии
- 6. Коэффициент мощности асинхронного двигателя при уменьшении его нагрузки изменяется:
 - 1. увеличится.
 - 2. не изменится.
 - 3. уменьшится.
 - 4. для ответа нет достаточных данных
- 7. Как выбирается направление контурных токов:
 - 1. произвольно.
 - 2. по часовой стрелке.
 - 3. против часовой стрелки.
 - 4. для ответа нет достаточных данных
 - 5.
- 8.Как должен изменяться магнитный поток, сцепленный с витком, чтобы и в витке индуцировалась постоянная ЭДС:
 - 1. изменяться по синусоидальному закону.
 - 2. равномерно (линейно) увеличиваться или уменьшаться.
 - 3. оставаться неизменным.
 - 4. для ответа нет достаточных данных
- 9.Сколько ваттметров необходимо для измерения мощности трехфазной цепи при симметричной нагрузке:
 - 1. 2.
 - 2. 3.
 - 3. 1.
 - 4. 4
- 10. От каких свойств сердечника зависят вихревые токи?
- 1. только от электрических


- 2. и от электрических и от магнитных
- 3. только от магнитных
- 4. для ответа нет достаточных данных

- 1. Каков характер движения электрических зарядов в проводнике при переменном токе:
 - 1. колебательный.
 - 2. поступательный.
 - 3. вращательный.
 - 4. Медленный.
- 2. Что происходит с активным сопротивлением катушки, если из него вынимать стальной сердечник:
 - 1. увеличится.
 - 2. уменьшится.
 - 3. не изменится.
 - 4. Резко увеличивается
- 3. Назвать основные части асинхронного двигателя:
 - 1. станина, сердечник, ротор, обмотка ротора.
 - 2. станина, сердечник, ротор.
 - 3. станина, сердечник, ротор, обмотка статора.
 - 4. Сердечник и обмотка ротора
- 4. Как изменится скольжение, если увеличить момент механической нагрузки на валу двигателя:
 - 1. уменьшится.
 - 2. увеличится.
 - 3. не изменится.
 - 4. Сначала уменьшается, затем увеличивается
- 5. Какова природа тока текущего в диэлектрике конденсатора:
 - 1. ток смещения электронных орбит.
 - 2. ионный ток проводимости.
 - 3. электронный ток проводимости.
 - 4. Электронно-ионной проводимости
- 6. Лампы накаливания с номинальным напряжением 220B включают в трехфазную сеть с линейным напряжением 220B. Определить схему соединения ламп:
 - 1. звездой.
 - 2. звездой с нулевым проводом.
 - 3. треугольником.
- 7.С какой целью применяют принудительное охлаждение машины постоянного тока:
 - 1. для уменьшения размеров и массы машины.
 - 2. для уменьшения потерь энергии в машине.
 - 3. во избежание перегрева машины.
 - 4. Для увеличения скорости
- 8. Какая ЭДС индуцируется в витках обмотки якоря генератора постоянного тока:
 - 1. постоянная по значению и направлению.
 - 2. переменная.
 - 3. постоянная по направлению.
 - 4. Максимальная
- 9. Как связана скорость вращения вектора, изображающего синусоидальную величину, с ее угловой частотой:
 - 1. скорость вращения вектора пропорциональна ω.
 - 2. они независимы.
 - 3. $\,$ скорость вращения вектора равна ω .
 - 4. Скорость вращения вектора пропорциональна U
- 10. Если два источника имеют одинаковые ЭДС и токи, но различные внутренние сопротивления, то из них больший КПД. имеет:
 - 1. с большим внутренним сопротивлением.
 - 2. с меньшим внутренним сопротивлением.
 - 3. КПД источников равны.

- 1.В трехфазной цепи Uл=127 Іл=2A Р=263Вт. Определить $\cos \varphi$:
 - 1. Cos $\varphi = 0.6$.
 - 2. Cos $\varphi = 0.8$.
 - 3. Cos $\varphi = 0.9$.
 - 4. Cos $\varphi = 1$
- 2.Из какой стали должен выполняться якорь генератора переменного тока:
 - 1. из магнитотвердой.
 - 2. из магнитомягкой.
 - из любой.
 - 4. Холоднокатаной
- 3. Какова природа тока, проходящего через диэлектрик конденсатора:
 - 1. ионный ток проводимости.
 - 2. электронный ток проводимости.
 - 3. ток смещения.
 - 4. для ответа нет достаточных данных
- 4. На каком законе основан принцип действия трансформатора:
 - 1. на законе Ампера.
 - 2. на законе электромагнитной индукции.
 - 3. на принципе Ленца.
 - 4. На законе Джоуля Ленца
- 5.При последовательном соединении 2^x конденсаторов, подключенных к источнику питания, один из них оказался пробитым. Как изменится запас прочности другого конденсатора:
 - 1. уменьшится.
 - 2. увеличится.
 - 3. останется неизменным.
 - 4. для ответа нет достаточных данных
- 6. Цепь с последовательно соединенными R и C подключают к источнику постоянного напряжения 100В. Укажите на правильное распределение напряжения на участках цепи:
 - 1. $U_R=0: U_c=100B.$
 - 2. $U_R=100B.U_c=0.$
 - 3. $U_R = 50B.U_c = 50B.$
 - 4. для ответа нет достаточных данных
- 7. Как изменить направление вращения магнитного поля 3^{x} фазного тока:
 - 1. нужно поменять местами две любые фазы.
 - 2. нужно поменять местами все три фазы.
 - 3. это невозможно.
 - 4. для ответа нет достаточных данных
- 8. Может ли ток в нулевом проводе четырех проводной цепи равняется нулю:
 - 1. не может.
 - 2. может.
 - 3. всегда равен нулю.
 - 4. Это зависит от мощности в цепи
- 9. Всегда ли сумма токов фаз равняется нулю при отсутствии нулевого провода:
 - 1. не всегда.
 - 2. это зависит от величины напряжения.
 - 3. всегда.
 - 4. Это зависит от рода тока
- 10.Обмотки трехфазного генератора соединены треугольником. С чем соединено начало второй обмотки:
 - 1. с началом первой обмотки.
 - 2. с концом первой обмотки.
 - 3. с концом третьей обмотки.
 - 4. для ответа нет достаточных данных

- 1. Можно ли применить уравнения. Кирхгофа для расчета цепей смешанного соединения:
 - 1. можно.
 - 2. нельзя.
 - 3. это зависит от количества ветвей.
 - 4. для ответа нет достаточных данных
- 2.Сколько соединительных проводов подходит к генератору, обмотки которого образуют звезду:
 - 1. 6.
 - 2. 4.
 - 3. 3.
 - 4. 10
- 3. Указать конструктивные основные детали машины постоянного тока:
 - 1. индуктор, якорь, коллектор, вентилятор.
 - 2. статор, главные полюсы, дополнительные полюсы, якорь, коллектор.
 - 3. индуктор, якорь, коллектор, щетки.
 - 4. для ответа нет достаточных данных
- 4. Как включают в электрическую цепь: а)амперметр; б)вольтметр.
 - 1. а) и б) параллельно нагрузке.
 - 2. а) последовательно с нагрузкой, б)параллельно нагрузке.
 - 3. а) и б) последовательно с нагрузкой
 - 4. для ответа нет достаточных данных
- 5. Резонансные явления при несинусоидальных ЭДС и тока возможны: (указать на неправильный ответ.)
 - 1. на низших гармониках.
 - 2. на первой гармонике.
 - 3. на высших гармониках.
 - 4. для ответа нет достаточных данных
- 6. При увеличении механической нагрузки на валу двигателя ток в обмотке ротора изменится:
 - 1. уменьшится.
 - 2. не изменится.
 - 3. увеличится.
 - 4. Это зависит от подводимого напряжения.
- 7.По мере раскручивания ротора ток в обмотке ротора будет изменяться:
 - 1. уменьшится.
 - 2. останется неизменным.
 - 3. увеличится.
 - 4. увеличится медленно
- 8.На какие токи и напряжения включают ваттметр при измерении мощности: а) с одним ваттметром; б) с двумя ваттметрами.
 - 1. линейные.
 - 2. а) фазные; б) линейные.
 - 3. фазные.
 - 4. для ответа нет достаточных данных
- 9.В цепи с активным сопротивлением энергия источника преобразуется в энергию:
 - 1. магнитного поля.
 - 2. электрического поля.
 - 3. тепловую.
 - 4. Электростатического поля
- 10. Какие сети используют для передачи электроэнергии:
 - 1. воздушные.
 - 2. все перечисленные сети.
 - 3. внутренние сети объектов.
 - 4. Кабельные

- 1.По катушке с насыщенным стальным сердечником проходит синусоидальный ток. Какое напряжение возникает на зажимах катушки:
 - 1. несинусоидальное.
 - 2. синусоидальное.
 - 3. постоянное.
 - 4. для ответа нет достаточных данных
- 2. Какие сети используют для передачи электроэнергии:
 - 1. воздушные.
 - 2. все перечисленные сети.
 - 3. кабельные.
 - 4. внутренние сети объектов
- 3. Укажите на уравнение, которое не соответствует рисунку:

- 1. $I_1+I_2-I_3-I_4=0$.
- 2. $I_1+I_2=I_3+I_4$
- 3. $I_1+I_2+I_3+I_4$

нет достаточных данных

4. для ответа

- 4. Чем отличается двигатель с фазной обмоткой ротора от двигателя с короткозамкнутой обмоткой ротора:
 - 1. наличием контактных колец и щеток.
 - 2. наличием пазов для охлаждения.
 - 3. числом катушек статора.
 - 4. Числом витков на обмотке ротора
- 5.В симметричной трехфазной цепи U_n =220В, I_n =5A, $Cos \varphi$ =0,8. Определить активную мощность в 3_x фазной цепи:
 - 1. 1,52кВт.
 - 2. 1,14кВт.
 - 3. 1,1кВт.
 - 4. $\rho = 2.28 \text{ kBT}$
- 6. Можно ли магнитоэлектрический прибор использовать для измерений в цепях переменного тока:
 - 1. можно.
 - 2. нельзя.
 - 3. можно, если прибор подключить через выпрямительную схему.
 - 4. Это зависит от величины измеряемой величины
- 7. При неизменном магнитном потоке возбуждения ток в обмотке якоря увеличился. Как изменяется вращающий момент двигателя:
 - 1. увеличился.
 - 2. уменьшился.
 - 3. не изменился.
 - 4. для ответа нет достаточных данных
- 8.Как изменятся потери мощности в стальном сердечнике и ЭДС катушки, если увеличить частоту при неизменном напряжении:
 - 1. Е- увеличится.
 - 2. $\Delta P_{\text{ст-}}$ уменьшится.
 - 3. Е- уменьшится.
 - 4. для ответа нет достаточных данных
- 9. Если известны сопротивление r, индуктивность L . Определить постоянную времени постоянная времени τ равно:
 - 1. $\tau = Lr$.

 - 3. $\mathcal{T}=L/r$.
 - 4. для ответа нет достаточных данных

10.С какой точкой соединяется начало первой обмотки при соединении обмоток генератора треугольником:

- 1. с концом второй.
- 2. с концом третьей.
- 3. с началом второй.
- 4. для ответа нет достаточных данных

Тестовое задание № 21.

- 1. На каком законе основан принцип действия трансформатора:
 - 1. на законе электромагнитной индукции.
 - 2. на законе Ампера.
 - 3. на принципе Ленца.
 - 4. На законе Джоуля -Ленца
- 2. Электродинамический ваттметр измеряет мощности:
 - 1. реактивную.
 - 2. активную.
 - 3. полную.
 - 4. для ответа нет достаточных данных
- 3. Напряжение на зажимах асинхронного двигателя уменьшилась в 2 раза. Как изменится его вращающий момент:
 - 1. уменьшится в 2 раза.
 - 2. не изменится.
 - 3. уменьшится в 4 раза.
 - 4. Уменьшится в 6 раз
- 4.Как изменится ЭДС самоиндукции при подключении катушки к источнику постоянного тока:
 - 1. не изменится.
 - 2. уменьшится.
 - 3. увеличится.
 - 4. Станет равным нулю
- 5. При увеличении механической нагрузки на валу двигателя ток в обмотке ротора изменится:
 - 1. увеличится.
 - 2. уменьшится.
 - 3. не изменится.
 - 4. Это зависит от подводимого напряжения
- 6.Известно, что сопротивление проводника $R = \rho \frac{L}{S}$. На какой из параметров этой формулы влияет

поверхностный эффект:

- 1. S.
- 2. L.
- ρ
- 4. R.
- 7. Какойиз приведенных материалов не проявляет ферромагнитных свойств:
 - 1. платина.
 - 2. никель.
 - 3. железо.
 - 4. для ответа нет достаточных данных
- 8. Чему равно сопротивление конденсатора без потерь постоянному току:
 - 1. 0 (нулю).
 - 2. ∞ (бесконечности).
 - 3. это зависит от емкости конденсатора.
 - 4. Это зависит от величины тока
- 9. Если в середине линии произойдет короткое замыкание, то в конце линии напряжение изменяется:
 - 1. уменьшится.
 - 2. станет равным нулю.
 - 3. не изменится.

- 4. для ответа нет достаточных данных
- 10. Можно ли применить уравнения Кирхгофа для расчета простейших цепей смешанного соединения:
 - 1. нельзя.
 - 2. можно.
 - 3. можно в исключительных случаях.
 - 4. для ответа нет достаточных данных

Тестовое задание № 22.

- 1. Какие свойства не присущи процессу перемагничивания ферромагнитных материалов:
 - 1. линейная зависимость В(Н).
 - 2. Остаточная индукция.
 - 3. потери на перемагничивание.
 - 4. Потери мощности
- 2. Каков характер движения электрических зарядов в проводнике при переменном токе:
 - 1. вращательный.
 - 2. колебательный.
 - 3. поступательный.
 - 4. Возвратно-поступательный
- 3. Как изменяется напряженность Е электрического поля плоского конденсатора, если, не изменяя величины заряда увеличить расстояние между его пластинками в 2 раза? Расстояние между пластинками конденсатора мало по сравнению с размерами пластин:
 - 1. увеличится в 2 раза.
 - 2. уменьшится в 2 раза.
 - 3. не изменится.
 - 4. увеличится в 6 раз
- 4. Как включают в электрическую цепь: а)амперметр, б)вольтметр:
 - 1. а) и б) последовательно с нагрузкой.
 - 2. а) последовательно с нагрузкой. б) параллельно нагрузке.
 - 3. а) и б) параллельно нагрузке.
 - 4. а) и б) параллельно источнику
- 5. Что происходит с активным сопротивлением катушки, если из него вынимать стальной сердечник:
 - 1. уменьшится.
 - 2. увеличится.
 - 3. не изменится.
 - 4. Станет равным нулю
- 6.Как изменить емкость и заряд на пластинах конденсатора, если напряжение на его зажимах повысится:
 - 1. . емкость и заряд увеличатся.
 - 2. емкость уменьшится, заряд увеличится.
 - 3. емкость останется неизменной, заряд увеличится.
 - 4. емкость увеличится в 2 раза, заряд уменьшится 3 раза
- 7. Для увеличения пускового момента у двигателя с фазным ротором применяют:
 - 1. в цепь обмотки ротора вводят пусковые реостаты.
 - 2. применяют ротор с двойной «беличьей клеткой».
 - 3. применяют ротор с глубоким пазом.
 - 4. для ответа нет достаточных данных
- 8. Назвать основные части асинхронного двигателя:
 - 1. станина, сердечник, ротор, обмотка ротора.
 - 2. станина, сердечник, ротор, обмотка статора.
 - 3. станина, сердечник, ротор.
 - 4. станина, ротор, сердечник
- 9. Как изменится скольжение, если увеличить момент механической нагрузки на валу двигателя:
 - 1. уменьшится.
 - 2. не изменится.
 - 3. увеличится.
 - 4. станет равным нулю
- 10.С какой точкой соединяется обмотка генератора треугольником? Начало первой:

- 1. с концом третьей.
- 2. с концом второй.
- 3. с началом второй.
- 4. с началом третьей

Тестовое задание № 23.

- 1. Какие материалы используют для изготовления короткозамкнутой обмотки ротора:
 - 1. алюминий, медь.
 - 2. алюминий.
 - 3. медь, электротехническую сталь.
 - Железо
- 2. Назвать основные части асинхронного двигателя:
 - 1. станина, сердечник, ротор, обмотка ротора.
 - 2. станина, сердечник, ротор, обмотка статора.
 - 3. станина, сердечник, ротор.
 - 4. Сердечник и обмотка ротора
- 3. Как изменится резонансная частота колебательного контура, если емкость увеличится в 4 раза:
 - 1. уменьшится в 4 раза.
 - 2. увеличится в 4 раза.
 - 3. уменьшится в 2 раза.
 - 4. для ответа нет достаточных данных
- 4.Является ли схема электрической цепи сложной, если на одной ветви находятся два источника ЭДС:
 - 1. является.
 - 2. не является.
 - 3. в исключительных случаях.
 - 4. для ответа нет достаточных данных
- 5. Каким будет мгновенное значение напряжения на конденсаторе при максимальном значении тока:
 - 1. равным нулю.
 - 2. максимальным.
 - 3. напряжение U_c зависит от $X_{c.}$
 - 4. для ответа нет достаточных данных
- 6. Указать основные недостатки асинхронного двигателя:
 - 1. низкий КПД.
 - 2. отсутствие экономических устройств для плавного регулирования скорости вращения ротора.
 - 3. зависимость скорости вращения от момента нагрузки на валу двигателя.
 - 4. Зависимость скорости вращения от момента двигателя
- 7. Как изменится ток в измерительной диагонали уравновешенного моста, если напряжение питания уменьшится:
 - 1. останется равным нулю.
 - 2. увеличится.
 - 3. уменьшится.
 - 4. для ответа нет достаточных данных
- 8. Как изменится ЭДС самоиндукции при подключении катушки к источнику постоянного тока:
 - 1. не изменится.
 - 2. увеличится.
 - 3. уменьшится.
 - 4. Станет равным нулю
- 9. Какие приборы дают возможность точно зафиксировать режим резонанса напряжений:
 - 1. вольтметр.
 - 2. вольтметр, амперметр.
 - 3. амперметр.
 - 4. ваттметр
- 10.В цепи с активным сопротивлением энергия источника преобразуется в энергию:
 - 1. магнитного поля.
 - 2. тепловую.
 - 3. электрического поля.

Тестовое задание № 24.

- 1.Для 3^x фазного двигателя, подключаемого к однофазной сети требуется большая пусковая емкость в случае:
 - 1. при соединении обмотки треугольников.
 - 2. при соединении обмотки звездой.
 - 3. одинаковая в обоих случаях.
 - 4. для ответа нет достаточных данных
- 2. Как влияет реактивное сопротивление на ток в режиме резонанса:
 - слабо.
 - 2. совсем не влияет.
 - сильно.
 - 4. для ответа нет достаточных данных
- 3.С какой точкой соединяется начало первой обмотки при включении обмоток генератора треугольником:
 - 1. с началом второй.
 - 2. с концом второй.
 - 3. с концом третьей.
 - 4. с началом третьей
- 4.Укажите основные детали прибора электродинамической системы, без которых работа прибора невозможна:
 - 1. неподвижная катушка, подвижная катушка, пружина, стрелка.
 - 2. неподвижная катушка, подвижная катушка, пружина, демпфер.
 - 3. подвижная катушка, пружина, стрелка, демпфер.
 - 4. для ответа нет достаточных данных
- 5. Какое из приведенных выражений неправильно определяет $\cos \varphi$ приемника энергии:
 - 1. Q/S.
 - 2. P/S.
 - 3. R/Z.
 - 4. для ответа нет достаточных данных
- 6.Точночть измерения измерительных приборов характеризуется:
 - 1. точностью отсчета.
 - 2. условиями эксперимента.
 - 3. относительной погрешностью измерения.
 - 4. для ответа нет достаточных данных
- 7.Скорость вращения двигателя уменьшилось. Как изменилась ЭДС, индуктируемая в обмотке якоря:
 - 1. уменьшилась.
 - 2. увеличилась.
 - 3. все двигатели ЭДС не индуктируются.
 - 4. для ответа нет достаточных данных
- 8. Укажите основное достоинство уравновешенного измерительного моста:
 - 1. малое потребление энергии из-за отсутствия тока в измерительной диагонали.
 - 2. большая точность измерений.
 - 3. возможность градуировки измерителя непосредственно в единицах измеряемой величины.
 - 4. для ответа нет достаточных данных
- 9. Как изменить направление вращения результирующего магнитного поля:
 - 1. это невозможно.
 - 2. это зависит от вращающего момента.
 - 3. изменить порядок следования фаз токов.
 - 4. Это зависит от скольжения
- 10. Коэффециент мощности асинхронного двигателя при уменьшении его нагрузки изменяется:
 - 1. увеличится.
 - 2. уменьшится.
 - 3. не изменится.
 - 4. для ответа нет достаточных данных

- 1. Влияет ли направление обхода контура на конечный результат при использовании закона полного тока
 - 1. не влияет;
 - 2. влияет:
 - 3. зависит от направления обхода контура
 - 4. для ответа нет достаточных данных
- 2. Из какой стали должен выполнятся якорь генератора переменного тока.
 - 1. из магнитотвердой;
 - 2. из магнитомягкой;
 - 3. из любой.
- 4. Из легированной стали
- 3. Укажите единицу потокосцепления в системе СИ
 - 1. $B6/m^2$;
 - 2. A/m;
 - 3. Вб
 - 4. для ответа нет достаточных данных
- 4. Какая из формул для определения количества теплоты, выделяющейся в проводнике является наиболее универсальной?
 - 1. $Q = U^2 t/R$;
 - 2. Q = W;
 - 3. $Q=I^2Rt$.
 - 4. для ответа нет достаточных данных
- 5. При неизменном магнитном потоке возбуждения ток в обмотке якоря увеличился. Как изменился вращающий поток двигателя
 - 1. увеличился;
 - 2. уменьшился;
 - 3. не изменился.
 - 4. для ответа нет достаточных данных
- 6. Укажите одно из важнейших достоинств цепей переменного тока по сравнению с цепями постоянного тока:
- 1. возможность преобразования электроэнергии в тепловую и механическую 2.возможность передачи электроэнергии на дальние расстояния;
 - 2 возможность изменения напряжения и тока с помощью трансформатора
 - 3. Возможность изменения напряжения и тока с помощью трансформатора.
 - 4. для ответа нет достаточных данных
- 7. При постоянной Э.Д.С. генератора и неизменных сопротивлениях нагрузки линейные токи могут меняться за счет:
 - 1.изменения фазных напряжений
 - 2.изменения фазных и линейных напряжений
 - 3.изменения линейных напряжений
 - 4 для ответа нет достаточных данных
- 8. Если длину и диаметр проводника увеличить в 2 раза, то сопротивление проводника изменится:
 - 1. увеличится в 2 раза
 - 2.уменьшится в 2 раза
 - 3.не изменится.
 - 4 для ответа нет достаточных данных
- 9. Какой параметр переменного тока необходимо знать дополнительно, чтобы по векторной диаграмме получить полное представление о переменном токе?
 - 1. начальную фазу;
 - 2. действующее значение
 - 3. угловую частоту
 - 4. Мгновенное значение тока
- 10. Какой из приведенных материалов не проявляет ферромагнитных свойств?
 - 1.никель
 - 2.платина
 - 3.железо.
 - 4 для ответа нет достаточных данных

КЛЮЧ к тестовым заданиям по дисциплине «Электротехника и электроника»

№ п/г	і тестов	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
тесту	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
110 TE	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
вопроса	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ер в	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Номер	8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	10	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

Критерии оценки результатов тестовых заданий (все задания содержат по 10 вопросов, в каждом 4 варианта ответов, из которых один правильный):

Критерии оценки уровня сформированности компетенций при выполнении теста:

- оценка «отлично» выставляется студенту в том случае, если он по результатам теста дал 91-100% правильных ответов на предложенные вопросы;
- оценка «хорошо» выставляется студенту в том случае, если он по результатам теста дал 81-90% правильных ответов на предложенные вопросы;
- оценка «удовлетворительно» выставляется студенту в том случае, если он по результатам теста дал 71-80% правильных ответов на предложен ные вопросы;
 - оценка «неудовлетворительно» (выставляется в том случае, если по результатам тестирования имеется 70% и менее правильных ответов.

Вопросы к зачету по дисциплине «Электротехника и электроника»

- 1. Электрическоая энергия и ее применение в народном хозяйстве
- 2. ЭДС источника и напряжение на ее зажимах.
- 3. Электрический ток в проводниках, сила тока, закон Ома
- 4. Работа и мощность электрических цепей, баланс мощностей.
- 5. Разветвленная электрическая цепь и топологические понятия теории электрических цепей.
- 6. Законы Кирхгофа
- 7. Электрические цепи несинусоидального тока.
- 8...Анализ расчета электрических цепей с двухполюсными и многополюсными элементами
- 9. Расчет сложной цепи постоянного тока методом контурных токов
- 10Расчет электрической цепи методом узлового напряжения.
- 11Теория электромагнитного поля, магнитный поток и магнитная индукция
- 12. Напряженность магнитного поля, магнитное напряжение.
- 13.ЭДС самоиндукции, взаимоиндуктивность контуров
- 14 Магнитное сопротивление, магнитная проводимость, закон Ома для магнитной цепи.
- 15. Основные понятия синусоидального тока.
- 16 Электрическая цепь переменного тока с R и L . Основные формулы и векторные диаграммы.
- 17. Электрическая цель переменного тока с R и C векторные диаграммы.
- 18. Трехфазная система, трехфазный ток, соединение обмоток генератора звездой.
- 19Соединение фаз генератора треугольником..
- 20 Мощности 3х фазной системы
- 21. Переходные процессы в линейных цепях, законы коммутации

- 22. Рубильники контакторы и автоматические выключатели.
- 23. Реле управления и защиты.
- 24.Классификация трансформаторов и их применение.
- 25. Устройство и принцип действия однофазного трансформатора,
- 26. Основные понятия, устройство и принцип действия машин постоянного тока.
- 28.Пуск электрических двигателей постоянного тока.
- 29. Асинхронные двигатели, устройство и принцип действия.
- 30. Пуск асинхронного двигателя.
- 31Общие понятия, устройство и принцип действия синхронной машины.
- 32Элементная база современных электронных устройств.
- 33. Классификация и применение электронных и ионных приборов.
- 34Газотрон, устройство и принцип действия
- 35. Проводники, полупроводники, изоляторы и их электропроводность.
- 35. Жидко- кристаллические индикаторы
- 37Биполярные и полевые транзисторы
- 38 Тиристоры.
- 39Операционные усилители электрических сигналов.
- 40.Источники вторичного электропитания, стабилизатор напряжения

Критерии оценки знаний студентов на зачете.

- 1. Оценка «зачтено» выставляется студенту, который:
- прочно усвоил предусмотренный программный материал;
- правильно, аргументировано ответил на все вопросы, с приведением примеров.
- показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов.
- Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе;
 - -обнаружил полное знание учебного материала,
- успешно выполнил предусмотренные в программе задания, усвоил основную литературу, рекомендованную кафедрой, демонстрирует систематический характер знаний по дисциплине и способен к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.
- Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на лабораторных занятиях.
 - 2. **Оценка «не зачтено»** Выставляется студенту, который не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры
- у студента нет.

Ответ оценивается как «не зачтено», если обучающийся:

- обнаружил пробелы в знаниях основного учебного материала,
- допускает принципиальные ошибки в выполнении предусмотренных программой заданий,
- ответы, носят несистематизированный, отрывочный, поверхностный характер, когда обучающийся не понимает существа излагаемых им вопросов, что свидетельствует о том, что он не может дальше продолжать обучение или приступать к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине.